SHROUDED CONDUCTORS VOLTAGE DROP CALCULATIONS

Shrouded Conductor System For Cranes / Hoist Electric Trollies/ Material Handlings Equipments

VOLTAGE DROP

A.C $V_d = \sqrt{3} \cdot l \cdot l_{total} \cdot Z_{ac}$

D.C $V_d = 2.1.I_{total}.R_{dc}$

V_d = Voltage Drop in Volts

I_{total} = Total Current in Amps

 Z_{ac} = Impedence in Ohms/Mtr

R_{dc} = Resistance in Ohms/Mtr

l = Effective Length in Mtrs

L = System length in Mtrs

⊗ = Power Feed□ = Collector

CONDUCTOR	40 A	100A	125A	250A	315A
Material	Stainless Steel	Galvanised Steel		Copper	
Impedence milli Ohms/M +35 °C	12.95	2.9	2.5	0.345	0.335
DC Resistance milli Ohms/M +35 ^O C	12.88	2.86	2.45	0.333	0.333

Power Feed Position ⊗	Schematic Diagram . Collector Symbol Indicates Position Of Maximum Voltage Drop	Effective Length I for voltage drop calculation
End Feed	←	l=L
Centre Feed	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l = <u>L</u> 2
Two Power Feed at both ends	⊗ ————————————————————————————————————	l = <u>L</u> 4
Two Power Feeds at L from each end of 6 system	$\begin{array}{c c} \leftarrow \stackrel{\bot}{6} \rightarrow & \leftarrow \stackrel{\bot}{6} \rightarrow \\ \hline \end{array}$	l = <u>L</u> 6
Three power feeds at L from each end and 10 one at centre	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l = <u>L</u> 10